If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16k+k^2=60
We move all terms to the left:
16k+k^2-(60)=0
a = 1; b = 16; c = -60;
Δ = b2-4ac
Δ = 162-4·1·(-60)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{31}}{2*1}=\frac{-16-4\sqrt{31}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{31}}{2*1}=\frac{-16+4\sqrt{31}}{2} $
| 2(35t-2)=88 | | 1y+7=17 | | 19^(x)=92 | | 14x+7x=321 | | F(13)=x+10 | | 5(8x)=10 | | 14x-10+4x=17x+7 | | 7x+-6=-2x+24 | | 4(x-4)+2x=44 | | 12x+3=4x+27 | | 9x+99=162 | | 12^{3x-1}=144 | | 25/4=5/14x | | X=-16x^2+5x+1 | | -2x+3=4x+4+-6x | | 8j+30=75 | | 2x^2-6+1=0 | | X+2d=108 | | x=90°65°=180 | | 61-2(-3x-5)=154 | | x90°65°=180 | | 5x+2=142 | | X+17+5x+1=180 | | 2m2+2=74 | | (16.5+4.5)3=x | | 4n-80=130 | | 2n-30=60 | | (x-4.5)3=36 | | 7n-20=44 | | x+12=30* | | 5^-2x=25 | | x=7/12x+600 |